Qualified Person’s Report
for the Rolvsnes Discovery, Norway

Prepared for
Lime Petroleum AS
2nd February, 2018
Document Approval and Distribution

Copies: Electronic (PDF)
Project No: EL-17-213700
Prepared for: Lime Petroleum AS

Approved by Gaffney, Cline & Associates

Project Manager: __________________________ 2nd February, 2018
Drew Powell CEng; FIChemE – Global Director, Operations

Reviewed by: __________________________ 2nd February, 2018
Dr. John Barker – Technical Director, Reservoir Engineering

Confidentiality and Disclaimer Statement
This document is confidential and has been prepared for the exclusive use of Lime Petroleum AS or parties named herein. It may not be distributed or made available, in whole or in part, to any other company or person without the prior knowledge and written consent of Gaffney, Cline & Associates (GCA). No person or company other than those for whom it is intended may directly or indirectly rely upon its contents. GCA is acting in an advisory capacity only and, to the fullest extent permitted by law, disclaims all liability for actions or losses derived from any actual or purported reliance on this document (or any other statements or opinions of GCA) by Lime Petroleum AS or by any other person or entity.
# Table of Contents

1. **Introduction** ...................................................................................................................... 1
   1.1 Overview ............................................................................................................................. 1
       1.1.1 Aim of Report ............................................................................................................. 2
       1.1.2 Use of the Report ....................................................................................................... 2
   1.2 Basis of Opinion ................................................................................................................ 2

2. **Executive Summary** .......................................................................................................... 6

3. **Asset Summary** ................................................................................................................ 8
   3.1 Licence Summary ................................................................................................................ 8
   3.2 Geological Setting ............................................................................................................. 8

4. **Technical Review** ............................................................................................................. 10
   4.1 Database and Methodology .............................................................................................. 10
   4.2 Well Summary .................................................................................................................. 10
       4.2.1 Well 16/1-12 ............................................................................................................. 10
       4.2.2 Well 16/1-25 S ......................................................................................................... 11
   4.3 STOIIP Estimates .............................................................................................................. 11
       4.3.1 Field Extent and Structure ....................................................................................... 11
       4.3.2 Volumetric Calculation ............................................................................................ 11
       4.3.3 Risks & Uncertainties .............................................................................................. 12
   4.4 Hydrocarbon Properties ................................................................................................... 12
   4.5 Assessment of Contingent Resources ............................................................................. 12

5. **Financial Analysis** .......................................................................................................... 14

6. **Recommendations** ........................................................................................................... 15

7. **References** .................................................................................................................... 16
List of Figures

Figure 1: Rolvsnes Discovery Location Map ................................................................. 1
Figure 2: Regional Depth Structure to BCU with Tectonic Fabric Overlain .................... 9

List of Tables

Table 1: Rolvsnes Property Description ........................................................................ 6
Table 2: Rolvsnes Discovery Contingent Resources as at 31st January, 2018 .................. 7
Table 3: GCA’s Range of Oil and Gas Recovery Factors (%) .......................................... 13

Appendices

Appendix I: SPE PRMS Definitions and Guidelines (Abridged)
Appendix II: Glossary
Appendix III: Summary of Reserves and Resources (SGX Listing Rules Appendix 7D)
1 Introduction

1.1 Overview

At the request of Lime Petroleum AS (Lime or “the Client”), Gaffney, Cline & Associates Ltd (GCA) of Bentley Hall, Blacknest, Alton, Hampshire, GU34 4PU, United Kingdom has prepared a Qualified Person’s Report (QPR) of the Contingent Resources of the Rolvsnes (formerly known as Edvard Grieg South) Discovery, located offshore Norway (Figure 1).

At the date of this report, Lime shareholders are Rex International Investments Pte. Ltd. (90% equity), a wholly owned subsidiary of Rex International Holding Limited (Rex) and Schroder & Co Banque SA (10% equity).

Figure 1: Rolvsnes Discovery Location Map

Source: Wood Mackenzie Petroview and Norwegian Petroleum Directorate

The Rolvsnes Discovery lies in PL338C, which is operated by Lundin Petroleum AB (Lundin), holders of a 50% working interest in the licence. Lime holds a 30% working interest and OMV (Norge) AS the remaining 20%.

PL338C covers an area of 121.637 km² and is in the initial exploration phase, the licence having been granted in December, 2014 and being valid until mid-December, 2019. The licence lies immediately south of the Edvard Grieg field and some 10 km north of the Luno II discovery.
The Rolvsnes Discovery comprises light oil in a fractured and weathered granite basement reservoir on the Utsira High geological structure.

GCA audited the Contingent Resources in the Rolvsnes Discovery for Lime as at end January, 2017. GCA’s audit involved analysis of a subsurface technical dataset provided by Lime, a conference call with Lime’s technical team and review of additional data and clarifications from the Operator, Lundin.

Since GCA’s previous audit, no additional subsurface data have been obtained by the partnership. The Operator has revised its estimates of gross rock volume (GRV) of the discovery in the light of additional depth conversion sensitivity work, but the resulting updated estimates of STOIIP are consistent with the STOIIP range reported previously, which is still appropriate for the purposes of this report. The Operator has also progressed with well-planning operations for the first Rolvsnes oil producer, which is planned to be drilled in March, 2018 and then tied back to the Edvard Grieg facilities for an extended well test. The evaluation of the basement and other plays in the area has continued through 2017.

1.1.1 Aim of Report

The aim of this report is to provide Lime with a QPR document, as required for regulatory reporting, that provides an independent assessment of the hydrocarbon resources for the Rolvsnes Discovery.

This QPR complies with the requirements as set out in Practice Note 4C, Disclosure Requirements for Mineral, Oil and Gas Companies (Effective from 27th September, 2013) as issued by the Singapore Exchange Securities Trading Limited (SGX) under the SGX Listing Manual, Section B, Rules of Catalist (Listing Rules).

1.1.2 Use of the Report

This report relates specifically and solely to the subject matter as defined in the scope of work, as set out herein, and is conditional upon the specified assumptions. The report must be considered in its entirety and must only be used for the purpose for which it is intended.

Lime will obtain GCA’s prior written or email approval for the use by third parties of any reports, results, statements or opinions attributed to GCA, including the form and context in which they are intended to be used. Such requirement of approval shall include, but not be confined to, statements or references in documents of a public or semi-public nature such as loan agreements, prospectuses, reserve statements, websites, press releases, etc. Lime also acknowledges GCA’s copyright in all manuals and/or other training materials which may be provided under the Work.

1.2 Basis of Opinion

This document reflects GCA’s informed professional judgment based on accepted standards of professional investigation and, as applicable, the data and information provided by the Client, the limited scope of engagement, and the time permitted to conduct the evaluation.

In line with those accepted standards, this document does not in any way constitute or make a guarantee or prediction of results, and no warranty is implied or expressed that actual outcome will conform to the outcomes presented herein. GCA has not independently verified any
information provided by, or at the direction of, the Client, and has accepted the accuracy and completeness of this data. GCA has no reason to believe that any material facts have been withheld, but does not warrant that its enquiries have revealed all of the matters that a more extensive examination might otherwise disclose.

The opinions expressed herein are subject to and fully qualified by the generally accepted uncertainties associated with the interpretation of geoscience and engineering data and do not reflect the totality of circumstances, scenarios and information that could potentially affect decisions made by the report's recipients and/or actual results. The opinions and statements contained in this report are made in good faith and in the belief, that such opinions and statements are representative of prevailing physical and economic circumstances.

In the preparation of this report, GCA has used definitions contained within the Petroleum Resources Management System (PRMS) Standard, which was approved by the Society of Petroleum Engineers, the World Petroleum Council, the American Association of Petroleum Geologists and the Society of Petroleum Evaluation Engineers in March 2007 (see Appendix I).

There are numerous uncertainties inherent in estimating reserves and resources, and in projecting future production, development expenditures, operating expenses and cash flows. Oil and gas resources assessments must be recognised as a subjective process of estimating subsurface accumulations of oil and gas that cannot be measured in an exact way. Estimates of oil and gas resources prepared by other parties may differ, perhaps materially, from those contained within this report.

The accuracy of any resource estimate is a function of the quality of the available data and of engineering and geological interpretation. Results of drilling, testing and production that post-date the preparation of the estimates may justify revisions, some or all of which may be material. Accordingly, resource estimates are often different from the quantities of oil and gas that are ultimately recovered, and the timing and cost of those volumes that are recovered may vary from that assumed.

Oil and condensate volumes are reported in millions (10^6) of barrels at stock tank conditions (MMBbl). Standard conditions are defined as 14.7 psia and 60°F. Industry Standard terms and abbreviations are contained in the attached Glossary (Appendix II), some or all of which may have been used in this report.

GCA prepared an independent assessment of the resources based on data and interpretations provided by the Client.

**Definition of Resources**

Contingent Resources are those quantities of petroleum estimated, as of a given date, to be potentially recoverable from known accumulations, but the applied project(s) are not yet considered mature enough for commercial development because of one or more contingencies. Contingent Resources may include, for example, projects for which there are currently no evident viable markets, or where commercial recovery is dependent on technology under development, or where evaluation of the accumulation is insufficient to clearly assess commerciality. Contingent Resources are further categorised in accordance with the level of certainty associated with the estimates and may be sub-classified based on project maturity and/or characterised by their economic status.
It must be appreciated that the Contingent Resources reported herein are unrisked in terms of economic uncertainty and commerciality. There is no certainty that it will be commercially viable to produce any portion of the Contingent Resources. Once discovered, the chance that the accumulation will be commercially developed is referred to as the “chance of development” (per PRMS).

GCA has not undertaken a site visit and inspection because the asset is offshore and there are no production facilities yet in place. As such, GCA is not in a position to comment on the operations or facilities in place, their appropriateness and condition, or whether they are in compliance with the regulations pertaining to such operations. Further, GCA is not in a position to comment on any aspect of health, safety, or environment of such operation.

This report has been prepared based on GCA’s understanding of the effects of petroleum legislation and other regulations that currently apply to these properties. However, GCA is not in a position to attest to property title or rights, conditions of these rights (including environmental and abandonment obligations), or any necessary licences and consents (including planning permission, financial interest relationships, or encumbrances thereon for any part of the appraised properties).

Qualifications

GCA is an independent international energy advisory group of more than 50 years’ standing, whose expertise includes petroleum reservoir evaluation and economic analysis.

In performing this study, GCA is not aware that any conflict of interest has existed. As an independent consultancy, GCA is providing impartial technical, commercial, and strategic advice within the energy sector. GCA’s remuneration was not in any way contingent on the contents of this report.

In the preparation of this document, GCA has maintained, and continues to maintain, a strict independent consultant-client relationship with the Client. Furthermore, the management and employees of GCA have no interest in any of the assets evaluated or related with the analysis performed, as part of this report.

Staff members who prepared this report hold appropriate professional and educational qualifications and have the necessary levels of experience and expertise to perform the work.

**Mr. Drew Powell**, Global Director, Operations, has 28 years’ industry experience and holds a B.Eng in Chemical Engineering from the University of Aston in Birmingham. He holds a Fellowship from the Institution of Chemicals Engineers and is a Chartered Engineer through the UK Engineering Council. He is a member of the Society of Petroleum Engineers and of the Energy Institute.

**Dr. John Barker**, Technical Director, Reservoir Engineering, has 33 years’ industry experience. He holds an M.A. in Mathematics from the University of Cambridge and a Ph.D. in Applied Mathematics from the California Institute of Technology. He is a member of the Society of Petroleum Engineers and of the Society of Petroleum Evaluation Engineers.

**Ms. French** holds an M.A. in Earth Sciences and a Diploma in Petroleum Geochemistry and has 19 years’ industry experience. She is a member of the Society of Petroleum Engineers.
Mr. Makhonin holds an M.Sc. in Geology and is a petrophysicist with 15 years’ industry experience.

Qualified Person

The QPR was prepared by GCA staff under the supervision of Mr. Drew Powell (GCA Operations Director), aided by Ms. Abby French and Mr. Alexey Makhonin. The final report was approved at the corporate level by Dr. John Barker (GCA Technical Director).

Dr. John Barker and GCA fulfil the criteria for a Qualified Person as specified in Catalist Rule 442. SGX recognises GCA as a Qualified Person as evidenced from previous acceptance of a number of other QPRs.

GCA can confirm that:

(a) The qualified person, being Dr John W. Barker (“John Barker”), is not a sole practitioner;

(b) John Barker has been directly supervised by John Gaffney, Regional Director, on behalf of GCA. John Gaffney maintains a Power of Attorney, issued by the directors of GCA, to represent GCA before all governmental and all regulatory authorities, departments, agencies and bodies;

(c) John Barker and GCA’s directors, substantial shareholders and their associates are independent of Rex, its directors and substantial shareholders;

(d) John Barker and GCA’s directors, substantial shareholders and their associates do not have any interest, direct or indirect, in Rex, its subsidiaries or associated companies and will not receive benefits other than remuneration paid to John Barker/GCA in connection with the QPR; and

(e) The remuneration paid to John Barker/GCA in connection with the QPR is not dependent on the findings of the QPR.
2 Executive Summary

Rolvnes (formerly referred to as Edvard Grieg South) was discovered in 2009 by well 16/1-12 and appraised in 2015 by well 16/1-25S. It is the first potentially commercial discovery in basement reservoir in Norwegian waters, so its development is the subject of considerable technical interest but there are no close Norwegian analogues to draw upon. Apart from the nearby 16/1-15 well, the next nearest significant discovery in basement reservoir is some 370 km WNW at the Lancaster discovery, in the UK West of Shetland area, which is also undeveloped at the present time.

Data for Rolvnes, obtained from the two well penetrations, includes a good wireline log suite, considerable amounts of core and results of a drill stem test (DST) on the 16/1-25S well. The discovery is also covered by 3D seismic data.

A property description of the asset is provided in Table 1.

<table>
<thead>
<tr>
<th>Asset Name/Country</th>
<th>Lime’s Interest(1) (%)</th>
<th>Development Status</th>
<th>Licence Expiry Date</th>
<th>Licence Area</th>
<th>Type of Mineral, Oil or Gas Deposit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolvnes / Norway</td>
<td>30%</td>
<td>Initial – Discovery</td>
<td>17th December, 2019</td>
<td>PL338C</td>
<td>Oil</td>
<td>Fractured Basement Reservoir</td>
</tr>
</tbody>
</table>

Note:
1. Rex International Holding Limited (Rex) has an effective interest of 90% in Lime.

The asset is located offshore Norway; access to the asset is by standard offshore marine logistics, with the natural environment reflecting Norwegian Sea conditions. The cultural environment is typical North European with no reported issues pertinent to the continued asset development.

GCA has audited the Operator’s volumetric assessment of stock tank oil initially in place (STOIIP) and the associated recoverable volumes of oil and gas. GCA considers that the recoverable volumes meet the definitions for classification as Contingent Resources under the PRMS.

GCA’s estimates of Contingent Resources associated with the Rolvnes Discovery are shown in Table 2. Resource estimates are also presented in Appendix III of this report in the format prescribed by SGX Listing Rules Appendix 7D.

The Operator is proposing a staged appraisal and development, in which up to four production wells and one water injection well will be drilled, as a sub-sea development tied back to existing infrastructure at the Edvard Grieg platform. Results of each well, including an extended period of production, will be evaluated before deciding to drill the next well. GCA considers this to be a very sensible approach.
Table 2: Rolvsnes Discovery Contingent Resources as at 31st January, 2018

(Gross and Net to Lime)

<table>
<thead>
<tr>
<th>Rolvsnes</th>
<th>Contingent Resources (Gross)</th>
<th>Contingent Resources (Net to Lime)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1C</td>
<td>2C</td>
</tr>
<tr>
<td>Oil (MMbbl)</td>
<td>10.3</td>
<td>31.4</td>
</tr>
<tr>
<td>Associated Gas (Bcf)</td>
<td>10.4</td>
<td>31.8</td>
</tr>
</tbody>
</table>

Notes:

1. Gross Contingent Resources are 100% of the volumes estimated to be recoverable from the discovery in the event that development goes ahead.
2. Lime’s Net Contingent Resources in this table are Lime’s Working Interest fraction of the Gross Field Resources.
3. The volumes reported here are “unrisked” in the sense that no adjustment has been made for the risk that the discovery may not be developed in the form envisaged or may not be developed at all (i.e. no “Chance of Development” factor has been applied).
4. Contingent Resources should not be aggregated with Reserves because of the different levels of risk involved.
5. Rex International Holding Limited (Rex) has an effective interest of 90% in Lime.

GCA’s overall observations and conclusions are that there are still considerable uncertainties related to the recoverable resources from the discovery, and that the Operator’s forward plan to appraise and develop the field in a step-wise manner is pragmatic and prudent. However, any assessment of recoverable resources at this stage must be considered as indicative only and it must be expected that resource estimates could change significantly as more data are acquired.
3 Asset Summary

3.1 Licence Summary

The Rolvsnes Discovery is located in licence PL338C, some 30 km east of the international boundary between Norway and the UK where water depths are approximately 100 m. Rolvsnes is a reservoir in fractured and weathered granite basement on the Utsira High, just south of the Edvard Grieg field (Figure 1). According to the Norwegian Petroleum Directorate (NPD) web site, the PL338C licence covers an area of 121.637 km².

The PL338 licence was awarded in 2004 with an initial phase of 3 years but the licence has been extended 6 times, and then more recently, PL338C was carved out from PL338 in December, 2014. The PL338C licence is valid to mid-December 2019, with a deadline for “decision on concretization” (BoK) on 17th June, 2018. If no development activity is proposed by that date, the licence would be relinquished, but otherwise it would be expected that a production licence would be issued and renewed for as long as commercial production remains viable. The PL338C licence obligations were fulfilled by drilling of well 16/1-25 S in 2015.

The discovery well, 16/1-12, was drilled in 2009 and the discovery was appraised in 2015 by well 16/1-25 S.

3.2 Geological Setting

The PL338C area lies on the Utsira High near the southern tip of the Viking Graben (Figure 2).

In this area there are up to four intersecting structural fabrics which have been overlain as the area has evolved. The Highland Boundary fault was initiated in the Ordovician Grampian orogeny and reactivated later. The Tornquist trend, due to the Silurian closure of the Tornquist Sea is more strongly developed further south but is observed in the Silurian age basement of Rolvsnes. It is followed by the Devonian Hardangerfjord Shear Zone (Fossen & Hurich, 2005) and Highland Boundary Fault reactivation. These were in turn overprinted by the Late Jurassic opening of the Viking Graben.

These structural fabrics are preserved in the basement in the form of both large faults which define the edges of basement blocks and grabens, but also within blocks as a network of small faults and fractures, features which have the potential to be viable hydrocarbon reservoirs in their own right.

Numerous oil and gas fields, including the main Edvard Grieg field and the Luno II discovery, are located in the Mesozoic sedimentary section above and around this high but most wells which penetrated the basement have found it to be tight. The only exceptions are the two wells in Rolvsnes itself and well 16/1-15, which is located in the northern area of the main Edvard Grieg field.
Figure 2: Regional Depth Structure to BCU with Tectonic Fabric Overlaid

4 Technical Review

4.1 Database and Methodology

GCA has had access to primary data such as end of well reports, PVT reports, conventional core descriptions, DST results and MDT sampling summaries, as well as to secondary data such as petrophysical evaluation reports, interpretations for each well, DST interpretations and a report detailing the geological modelling undertaken by the Operator. The entire licence is covered by multiple 3D seismic surveys. The most recent was acquired in 2012. GCA also received digital copies of the top reservoir depth structure grid, a seismic refraction velocities grid and a field outline polygon. GCA did not have a copy of the static or dynamic models, or of the full seismic data, but these were not considered necessary for the purpose of this report.

GCA’s approach focused on cross-checks of the existing evaluations in key discipline areas, with particular emphasis on aspects considered to be subject to the greatest uncertainty. The aim was to reach an independent opinion on the existing interpretations and estimates, and to establish whether they are reasonable. Any concerns identified were raised and discussed with Lime and/or Lundin. GCA made such adjustments to existing interpretations and estimates as it deemed necessary.

In instances where volumes are estimated using complex 3-dimensional models, it is appropriate to ground-truth the model results against the fundamental data. This was the workflow followed by GCA in this instance.

GCA considers that the available data were sufficient to enable the range of Contingent Resources to be estimated. However, the current lack of special core analysis (SCAL) data is a significant source of uncertainty and such data would be needed to gain confidence in the dynamic modelling results.

4.2 Well Summary

Both wells drilled on Rolvsnes are located at the same structural elevation and encountered a hydrocarbon column of about 30 m. The two wells show quite different wireline log characteristics. The Operator describes the basement rock as granodiorite at well 16/1-12 and monzogranite at well 16/1-25S.

The reservoir porosity in the basement is a combination of microfractures and matrix porosity, being caused by both physical and chemical weathering processes.

4.2.1 Well 16/1-12

Well 16/1-12 (2009) found oil in weathered and faulted/fractured granitic basement directly beneath tight sediments of the Cretaceous Cromer Knoll and Shetland Groups. The oil column was confirmed by oil sampling, pressure measurements and observations in both conventional and sidewall cores.

Well 16/1-12 found an undersaturated black oil with geochemical characteristics generally similar to that of the petroleum of the nearby Edvard Grieg field, however, with a different oil-water contact, suggesting a separate pool.

Petrophysical analysis showed average porosity to be 9%, with average matrix permeability of 1 mD. Three MiniDSTs were performed showing permeability of the
weathered and fractured basement up to 700 mD. The oil-water contact was found at 1,954 m MD, however, there were shows in the core and cuttings beneath this contact.

4.2.2 Well 16/1-25 S

This well was drilled in 2015, some 2.7 km south of well 16/1-12. The top basement was found at -1,898 m TVDss.

16/1-25 S was drilled as a deviated well (15° through basement) in order to cross more faults and test a wider area and in that way to get better control on variability, quality and thickness of the weathered zones. The well encountered an oil column of about 30 m in porous and fractured basement rock.

The pressure data shows this well is probably in the same compartment as the 16/1-12 oil discovery, with approximately the same OWC, although no direct communication has been demonstrated. The fluid type is oil with similar properties to the Edvard Grieg field oil. Extensive data acquisition and sampling was carried out in the reservoir including conventional coring and fluid sampling. One production test (DST) was performed across the oil leg. The DST produced a reported 42 Sm³/day, but showed a significant skin effect hampering production. A subsequent injectivity test gave a stable rate of 1,000 Sm³/day, corroborating the good permeability found in the 16/12-1 well.

4.3 STOIIP Estimates

4.3.1 Field Extent and Structure

The Rolvsnes discovery is an elevated footwall block bounded to north and west by faults defining the Utsira High. The block comprises basement and is directly overlain by the Base Cretaceous Unconformity (BCU).

The extent of the weathered and fractured basement contributing hydrocarbon pore volume within the footwall block is unknown. The Operator has used seismic refraction velocity as an indicator of likely weathered basement during exploration, with slow refraction velocities being qualitatively equated to highly weathered basement.

Weathered and fractured basement has been demonstrated by the centrally positioned wells but may deteriorate to north and west. Each well found a weathered and fractured interval of 30-40 m with a fractured interval below, the degree of weathering decreasing with depth. Weathering might be expected to occur mostly at the top of the basement, but elsewhere on the Utsira High, crestal locations have been drilled and found to be tight.

Fracturing and weathering may also be concentrated around faults. Seismic data across Rolvsnes have been reprocessed to focus on basement rather than sedimentary cover and reveal a network of seismically resolvable faults which have been imaged by coherency type seismic attribute data. Typically the faults dip at angles of 30-60 degrees and have been demonstrated in the two wells on both FMI logs and core. Fracture intensity seen in core is reported to be between four and ten times that seen on FMI logs.

4.3.2 Volumetric Calculation

The Operator has constructed a static geological model of the reservoir. GCA does not have a copy of the model, but has reviewed reports on how it was constructed. GCA was supplied with a digital copy of the top reservoir surface in TWT and depth and the
Operator’s field outline, and was able to confirm a GRV down to a FWL of -1,927 m TVDss of 1,566 MMm³. This ‘container’ is the basis of all the subsurface modelling.

The Operator has sampled the network of seismically resolvable faults into the static model container direct from the seismic attribute volume and these faults are the loci for sub-seismic scale fracture modelling. This is a standard and effective technique in fractured basement reservoirs and the faults can be tied back to the well control. Two fracture models were trialed with different fracture densities and apertures.

GCA has made its own estimates of STOIIP, on the basis of capturing uncertainty in the field extent and weathered interval as well as varying the petrophysical properties of the reservoir. Matrix porosity has been confined to a 30-40 m thick zone at the top of the basement but fracture porosity has been assumed to be present at all depths. The proportion of matrix system STOIIP increases from the Low to the High case.

GCA’s Low – Best – High estimates of STOIIP are 77 –169 – 338 MMbbl respectively.

Given the subsurface uncertainties remaining in this field, which is the first of this type in the Norwegian North Sea and for which no closure is yet known, GCA considers its STOIIP range is appropriately broad at this early stage of appraisal.

4.3.3 Risks & Uncertainties

The main subsurface risks affecting STOIIP identified for Rolvsnes are:

- Areal extent of basement with matrix porosity/permeability;
- Presence of closed faults and or fractures rather than the anticipated open faults and fractures;
- Unexpected occlusion of permeability or porosity by high clay content; and
- Petrological variation within the basement such as sills or dykes.

4.4 Hydrocarbon Properties

Oil samples have been taken from well 16/1-12 and 16/1-25S. In both wells, oil samples were secured from two different depths. The oil in Rolvsnes is under-saturated with normal properties.

Work production chemistry and flow assurance has been underway through 2017, involving wax properties, hydrate prediction, fluid compatibility testing and scale evaluations. Trace elements (H₂S, CO₂, Hg, Mercaptans) will be sampled during the planned DST on the next well.

GCA does not consider that the PVT analysis is critical to uncertainties in the resource assessment.

4.5 Assessment of Contingent Resources

GCA has estimated a range of recovery factors for each of the matrix and fracture systems to represent a range of recovery mechanisms and notes there is more uncertainty in the benefits of water injection on matrix oil recovery compared with the fracture system and the contribution from the matrix hence becomes progressively more significant towards the High case.
GCA’s estimated range of recovery factors is summarised in Table 3. Although there is a considerable range in recovery factors for both the matrix and fracture systems, the combined range is much narrower, owing to the increasing proportion of matrix STOIIP towards the High case.

Table 3: GCA’s Range of Oil and Gas Recovery Factors (%)

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>Best</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix</td>
<td>5.0</td>
<td>10.0</td>
<td>15.0</td>
</tr>
<tr>
<td>Fractures</td>
<td>20.0</td>
<td>30.0</td>
<td>40.0</td>
</tr>
<tr>
<td>Combined</td>
<td>13.4</td>
<td>18.6</td>
<td>23.1</td>
</tr>
</tbody>
</table>

GCA has estimated associated gas Contingent Resources without making any provision for fuel, flare, shrinkage or other losses. Based on the PVT data for well 16/1-25S, GCA has applied a fixed GOR of 180 m³/m³ (1,010 scf/stb) for all three resource categories.

The oil and gas Contingent Resources for the Rolvsnes discovery are summarised in Table 2, in the Executive Summary.
5 Financial Analysis

GCA has not conducted any economic analysis of the proposed development project; none is required for Contingent Resources as these are not required to be economic.

Financial analysis of the operations, taxes, liabilities and marketing are not considered applicable for the QPR given the nascent nature of the project to develop the Rolvsnes discovery.

The Norwegian fiscal regime consists of two profit-based taxes, corporate income tax at a rate of 24% and the Resource Rent Tax at 54%. The tax basis is essentially the same for both taxes. Additionally, a company which, due to losses, is not in a tax position may each year claim reimbursement of the tax value of exploration expenses and abandonment costs from the government.
6 Recommendations

- GCA agrees with the Operator, Lundin’s, current plan to de-risk the Rolvsnes discovery by carrying out further technical work.

- No further recommendations are considered at this time.
7 References


2. Edvard Grieg South Summary – Lime, January 2017
Appendix I
SPE PRMS Definitions and Guidelines (Abridged)
Preamble

Petroleum resources are the estimated quantities of hydrocarbons naturally occurring on or within the Earth’s crust. Resource assessments estimate total quantities in known and yet-to-be-discovered accumulations; resources evaluations are focused on those quantities that can potentially be recovered and marketed by commercial projects. A petroleum resources management system provides a consistent approach to estimating petroleum quantities, evaluating development projects, and presenting results within a comprehensive classification framework.

International efforts to standardize the definition of petroleum resources and how they are estimated began in the 1930s. Early guidance focused on Proved Reserves. Building on work initiated by the Society of Petroleum Evaluation Engineers (SPEE), SPE published definitions for all Reserves categories in 1987. In the same year, the World Petroleum Council (WPC, then known as the World Petroleum Congress), working independently, published Reserves definitions that were strikingly similar. In 1997, the two organizations jointly released a single set of definitions for Reserves that could be used worldwide. In 2000, the American Association of Petroleum Geologists (AAPG), SPE and WPC jointly developed a classification system for all petroleum resources. This was followed by additional supporting documents: supplemental application evaluation guidelines (2001) and a glossary of terms utilized in Resources definitions (2005). SPE also published standards for estimating and auditing reserves information (revised 2007).

These definitions and the related classification system are now in common use internationally within the petroleum industry. They provide a measure of comparability and reduce the subjective nature of resources estimation. However, the technologies employed in petroleum exploration, development, production and processing continue to evolve and improve. The SPE Oil and Gas Reserves Committee works closely with other organizations to maintain the definitions and issues periodic revisions to keep current with evolving technologies and changing commercial opportunities.

The SPE PRMS document consolidates, builds on, and replaces guidance previously contained in the 1997 Petroleum Reserves Definitions, the 2000 Petroleum Resources Classification and Definitions publications, and the 2001 “Guidelines for the Evaluation of Petroleum Reserves and Resources”; the latter document remains a valuable source of more detailed background information.

These definitions and guidelines are designed to provide a common reference for the international petroleum industry, including national reporting and regulatory disclosure agencies, and to support petroleum project and portfolio management requirements. They are intended to improve clarity in global communications regarding petroleum resources. It is expected that SPE PRMS will be supplemented with industry education programs and application guides addressing their implementation in a wide spectrum of technical and/or commercial settings.

It is understood that these definitions and guidelines allow flexibility for users and agencies to tailor application for their particular needs; however, any modifications to the guidance contained herein should be clearly identified. The definitions and guidelines contained in this document must not be construed as modifying the interpretation or application of any existing regulatory reporting requirements.


---

RESERVES

Reserves are those quantities of petroleum anticipated to be commercially recoverable by application of development projects to known accumulations from a given date forward under defined conditions.

Reserves must satisfy four criteria: they must be discovered, recoverable, commercial, and remaining based on the development project(s) applied. Reserves are further subdivided in accordance with the level of certainty associated with the estimates and may be sub-classified based on project maturity and/or characterized by their development and production status. To be included in the Reserves class, a project must be sufficiently defined to establish its commercial viability. There must be a reasonable expectation that all required internal and external approvals will be forthcoming, and there is evidence of firm intention to proceed with development within a reasonable time frame. A reasonable time frame for the initiation of development depends on the specific circumstances and varies according to the scope of the project. While 5 years is recommended as a benchmark, a longer time frame could be applied where, for example, development of economic projects are deferred at the option of the producer for, among other things, market-related reasons, or to meet contractual or strategic objectives. In all cases, the justification for classification as Reserves should be clearly documented. To be included in the Reserves class, there must be a high confidence in the commercial producibility of the reservoir as supported by actual production or formation tests. In certain cases, Reserves may be assigned on the basis of well logs and/or core analysis that indicate that the subject reservoir is hydrocarbon-bearing and is analogous to reservoirs in the same area that are producing or have demonstrated the ability to produce on formation tests.

On Production

The development project is currently producing and selling petroleum to market.

The key criterion is that the project is receiving income from sales, rather than the approved development project necessarily being complete. This is the point at which the project “chance of commerciality” can be said to be 100%. The project “decision gate” is the decision to initiate commercial production from the project.

Approved for Development

All necessary approvals have been obtained, capital funds have been committed, and implementation of the development project is under way.

At this point, it must be certain that the development project is going ahead. The project must not be subject to any contingencies such as outstanding regulatory approvals or sales contracts. Forecast capital expenditures should be included in the reporting entity’s current or following year’s approved budget. The project “decision gate” is the decision to start investing capital in the construction of production facilities and/or drilling development wells.

Justified for Development

Implementation of the development project is justified on the basis of reasonable forecast commercial conditions at the time of reporting, and there are reasonable expectations that all necessary approvals/contracts will be obtained.

In order to move to this level of project maturity, and hence have reserves associated with it, the development project must be commercially viable at the time of reporting, based on the reporting entity’s assumptions of future prices, costs, etc. (“forecast case”) and the specific circumstances of the project. Evidence of a firm intention to proceed with development within a reasonable time frame will be sufficient to demonstrate commerciality. There should be a development plan in sufficient detail to support the assessment of commerciality and a reasonable expectation that any regulatory approvals or sales contracts required prior to project implementation will be forthcoming. Other than such approvals/contracts, there should be no known contingencies that could preclude the development from proceeding within a reasonable timeframe (see Reserves class). The project “decision gate” is the decision by the reporting entity and its partners, if any, that the project has reached a level of technical and commercial maturity sufficient to justify proceeding with development at that point in time.
Proved Reserves

*Proved Reserves are those quantities of petroleum, which by analysis of geoscience and engineering data, can be estimated with reasonable certainty to be commercially recoverable, from a given date forward, from known reservoirs and under defined economic conditions, operating methods, and government regulations.*

If deterministic methods are used, the term reasonable certainty is intended to express a high degree of confidence that the quantities will be recovered. If probabilistic methods are used, there should be at least a 90% probability that the quantities actually recovered will equal or exceed the estimate. The area of the reservoir considered as Proved includes:

1. The area delineated by drilling and defined by fluid contacts, if any, and
2. Adjacent undrilled portions of the reservoir that can reasonably be judged as continuous with it and commercially productive on the basis of available geoscience and engineering data.

In the absence of data on fluid contacts, Proved quantities in a reservoir are limited by the lowest known hydrocarbon (LKH) as seen in a well penetration unless otherwise indicated by definitive geoscience, engineering, or performance data. Such definitive information may include pressure gradient analysis and seismic indicators. Seismic data alone may not be sufficient to define fluid contacts for Proved reserves (see “2001 Supplemental Guidelines,” Chapter 8). Reserves in undeveloped locations may be classified as Proved provided that the locations are in undrilled areas of the reservoir that can be judged with reasonable certainty to be commercially productive. Interpretations of available geoscience and engineering data indicate with reasonable certainty that the objective formation is laterally continuous with drilled Proved locations. For Proved Reserves, the recovery efficiency applied to these reservoirs should be defined based on a range of possibilities supported by analogs and sound engineering judgment considering the characteristics of the Proved area and the applied development program.

Probable Reserves

*Probable Reserves are those additional Reserves which analysis of geoscience and engineering data indicate are less likely to be recovered than Proved Reserves but more certain to be recovered than Possible Reserves.*

It is equally likely that actual remaining quantities recovered will be greater than or less than the sum of the estimated Proved plus Probable Reserves (2P). In this context, when probabilistic methods are used, there should be at least a 50% probability that the actual quantities recovered will equal or exceed the 2P estimate. Probable Reserves may be assigned to areas of a reservoir adjacent to Proved areas where data control or interpretations of available data are less certain. The interpreted reservoir continuity may not meet the reasonable certainty criteria. Probable estimates also include incremental recoveries associated with project recovery efficiencies beyond that assumed for Proved.

Possible Reserves

*Possible Reserves are those additional reserves which analysis of geoscience and engineering data indicate are less likely to be recoverable than Probable Reserves.*

The total quantities ultimately recovered from the project have a low probability to exceed the sum of Proved plus Probable plus Possible (3P), which is equivalent to the high estimate scenario. When probabilistic methods are used, there should be at least a 10% probability that the actual quantities recovered will equal or exceed the 3P estimate. Possible Reserves may be assigned to areas of a reservoir adjacent to Probable where data control and interpretations of available data are progressively less certain. Frequently, this may be in areas where geoscience and engineering data are unable to clearly define the area and vertical reservoir limits of commercial production from the reservoir by a defined project. Possible estimates also include incremental quantities associated with project recovery efficiencies beyond that assumed for Probable.
Probable and Possible Reserves

(See above for separate criteria for Probable Reserves and Possible Reserves.)

The 2P and 3P estimates may be based on reasonable alternative technical and commercial interpretations within the reservoir and/or subject project that are clearly documented, including comparisons to results in successful similar projects. In conventional accumulations, Probable and/or Possible Reserves may be assigned where geoscience and engineering data identify directly adjacent portions of a reservoir within the same accumulation that may be separated from Proved areas by minor faulting or other geological discontinuities and have not been penetrated by a wellbore but are interpreted to be in communication with the known (Proved) reservoir. Probable or Possible Reserves may be assigned to areas that are structurally higher than the Proved area. Possible (and in some cases, Probable) Reserves may be assigned to areas that are structurally lower than the adjacent Proved or 2P area. Caution should be exercised in assigning Reserves to adjacent reservoirs isolated by major, potentially sealing, faults until this reservoir is penetrated and evaluated as commercially productive. Justification for assigning Reserves in such cases should be clearly documented. Reserves should not be assigned to areas that are clearly separated from a known accumulation by non-productive reservoir (i.e., absence of reservoir, structurally low reservoir, or negative test results); such areas may contain Prospective Resources. In conventional accumulations, where drilling has defined a highest known oil (HKO) elevation and there exists the potential for an associated gas cap, Proved oil Reserves should only be assigned in the structurally higher portions of the reservoir if there is reasonable certainty that such portions are initially above bubble point pressure based on documented engineering analyses. Reservoir portions that do not meet this certainty may be assigned as Probable and Possible oil and/or gas based on reservoir fluid properties and pressure gradient interpretations.

Developed Reserves

Developed Reserves are expected quantities to be recovered from existing wells and facilities.

Reserves are considered developed only after the necessary equipment has been installed, or when the costs to do so are relatively minor compared to the cost of a well. Where required facilities become unavailable, it may be necessary to reclassify Developed Reserves as Undeveloped. Developed Reserves may be further sub-classified as Producing or Non-Producing.

Developed Producing Reserves

Developed Producing Reserves are expected to be recovered from completion intervals that are open and producing at the time of the estimate.

Improved recovery reserves are considered producing only after the improved recovery project is in operation.

Developed Non-Producing Reserves

Developed Non-Producing Reserves include shut-in and behind-pipe Reserves

Shut-in Reserves are expected to be recovered from:

1. completion intervals which are open at the time of the estimate but which have not yet started producing,
2. wells which were shut-in for market conditions or pipeline connections, or
3. wells not capable of production for mechanical reasons.

Behind-pipe Reserves are expected to be recovered from zones in existing wells which will require additional completion work or future re-completion prior to start of production. In all cases, production can be initiated or restored with relatively low expenditure compared to the cost of drilling a new well.
Undeveloped Reserves

*Undeveloped Reserves are quantities expected to be recovered through future investments:*

1. from new wells on undrilled acreage in known accumulations,
2. from deepening existing wells to a different (but known) reservoir,
3. from infill wells that will increase recovery, or
4. where a relatively large expenditure (e.g. when compared to the cost of drilling a new well) is required to
   (a) recomplete an existing well or
   (b) install production or transportation facilities for primary or improved recovery projects.

**CONTINGENT RESOURCES**

*Those quantities of petroleum estimated, as of a given date, to be potentially recoverable from known accumulations by application of development projects, but which are not currently considered to be commercially recoverable due to one or more contingencies.*

Contingent Resources may include, for example, projects for which there are currently no viable markets, or where commercial recovery is dependent on technology under development, or where evaluation of the accumulation is insufficient to clearly assess commerciality. Contingent Resources are further categorized in accordance with the level of certainty associated with the estimates and may be sub-classified based on project maturity and/or characterized by their economic status.

**Development Pending**

*A discovered accumulation where project activities are ongoing to justify commercial development in the foreseeable future.*

The project is seen to have reasonable potential for eventual commercial development, to the extent that further data acquisition (e.g. drilling, seismic data) and/or evaluations are currently ongoing with a view to confirming that the project is commercially viable and providing the basis for selection of an appropriate development plan. The critical contingencies have been identified and are reasonably expected to be resolved within a reasonable time frame. Note that disappointing appraisal/evaluation results could lead to a re-classification of the project to “On Hold” or “Not Viable” status. The project “decision gate” is the decision to undertake further data acquisition and/or studies designed to move the project to a level of technical and commercial maturity at which a decision can be made to proceed with development and production.

**Development Unclarified or on Hold**

*A discovered accumulation where project activities are on hold and/or where justification as a commercial development may be subject to significant delay.*

The project is seen to have potential for eventual commercial development, but further appraisal/evaluation activities are on hold pending the removal of significant contingencies external to the project, or substantial further appraisal/evaluation activities are required to clarify the potential for eventual commercial development. Development may be subject to a significant time delay. Note that a change in circumstances, such that there is no longer a reasonable expectation that a critical contingency can be removed in the foreseeable future, for example, could lead to a reclassification of the project to “Not Viable” status. The project “decision gate” is the decision to either proceed with additional evaluation designed to clarify the potential for eventual commercial development or to temporarily suspend or delay further activities pending resolution of external contingencies.
Development Not Viable

A discovered accumulation for which there are no current plans to develop or to acquire additional data at the time due to limited production potential.

The project is not seen to have potential for eventual commercial development at the time of reporting, but the theoretically recoverable quantities are recorded so that the potential opportunity will be recognized in the event of a major change in technology or commercial conditions. The project “decision gate” is the decision not to undertake any further data acquisition or studies on the project for the foreseeable future.

PROSPECTIVE RESOURCES

Those quantities of petroleum which are estimated, as of a given date, to be potentially recoverable from undiscovered accumulations.

Potential accumulations are evaluated according to their chance of discovery and, assuming a discovery, the estimated quantities that would be recoverable under defined development projects. It is recognized that the development programs will be of significantly less detail and depend more heavily on analog developments in the earlier phases of exploration.

Prospect

A project associated with a potential accumulation that is sufficiently well defined to represent a viable drilling target.

Project activities are focused on assessing the chance of discovery and, assuming discovery, the range of potential recoverable quantities under a commercial development program.

Lead

A project associated with a potential accumulation that is currently poorly defined and requires more data acquisition and/or evaluation in order to be classified as a prospect.

Project activities are focused on acquiring additional data and/or undertaking further evaluation designed to confirm whether or not the lead can be matured into a prospect. Such evaluation includes the assessment of the chance of discovery and, assuming discovery, the range of potential recovery under feasible development scenarios.

Play

A project associated with a prospective trend of potential prospects, but which requires more data acquisition and/or evaluation in order to define specific leads or prospects.

Project activities are focused on acquiring additional data and/or undertaking further evaluation designed to define specific leads or prospects for more detailed analysis of their chance of discovery and, assuming discovery, the range of potential recovery under hypothetical development scenarios.
Appendix II

Glossary
**GLOSSARY**

Subset of Standard Oil Industry Terms and Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>°</td>
<td>Degrees</td>
</tr>
<tr>
<td>°F</td>
<td>Degrees Fahrenheit</td>
</tr>
<tr>
<td>1C</td>
<td>Low Estimate of Contingent Resources</td>
</tr>
<tr>
<td>2C</td>
<td>Best Estimate of Contingent Resources</td>
</tr>
<tr>
<td>3C</td>
<td>High Estimate of Contingent Resources</td>
</tr>
<tr>
<td>3D</td>
<td>Three dimensional</td>
</tr>
<tr>
<td>AAPG</td>
<td>American Association of Petroleum Geologists</td>
</tr>
<tr>
<td>Bcf</td>
<td>Billions of cubic feet</td>
</tr>
<tr>
<td>BCU</td>
<td>Base Cretaceous Unconformity</td>
</tr>
<tr>
<td>BoK</td>
<td>Decision on concretization</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>DST</td>
<td>Drill Stem Test</td>
</tr>
<tr>
<td>FMI</td>
<td>Formation Microimager</td>
</tr>
<tr>
<td>FWL</td>
<td>Free Water Level</td>
</tr>
<tr>
<td>GIIP</td>
<td>Gas Initially In Place</td>
</tr>
<tr>
<td>GOR</td>
<td>Gas Oil Ratio</td>
</tr>
<tr>
<td>GRV</td>
<td>Gross Rock Volume</td>
</tr>
<tr>
<td>HzS</td>
<td>Hydrogen sulphide</td>
</tr>
<tr>
<td>HBF</td>
<td>Highland Boundary Fault</td>
</tr>
<tr>
<td>Hg</td>
<td>Mercury</td>
</tr>
<tr>
<td>HSZ</td>
<td>Hardanger Shear Zone</td>
</tr>
<tr>
<td>k</td>
<td>Permeability</td>
</tr>
<tr>
<td>km</td>
<td>Kilometres</td>
</tr>
<tr>
<td>km²</td>
<td>Square kilometres</td>
</tr>
<tr>
<td>m</td>
<td>Metres</td>
</tr>
<tr>
<td>M</td>
<td>Thousand</td>
</tr>
<tr>
<td>m³</td>
<td>Cubic metres</td>
</tr>
<tr>
<td>mD</td>
<td>Measure of permeability in millidarcies</td>
</tr>
<tr>
<td>MDT</td>
<td>Modular Dynamic Tester</td>
</tr>
<tr>
<td>MDT</td>
<td>Modular Dynamic Tester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Million</td>
</tr>
<tr>
<td>MM³</td>
<td>Million cubic metres</td>
</tr>
<tr>
<td>Mmbbl</td>
<td>Millions of barrels</td>
</tr>
<tr>
<td>OWC</td>
<td>Oil water contact</td>
</tr>
<tr>
<td>PRMS</td>
<td>Petroleum Resources Management System</td>
</tr>
<tr>
<td>psia</td>
<td>Pounds per square inch absolute</td>
</tr>
<tr>
<td>QPR</td>
<td>Qualified Person's Report</td>
</tr>
<tr>
<td>Rf</td>
<td>Recovery factor</td>
</tr>
<tr>
<td>SCAL</td>
<td>Special core analysis</td>
</tr>
<tr>
<td>Sm³</td>
<td>Standard cubic metres</td>
</tr>
<tr>
<td>Sm3/day</td>
<td>Standard cubic metres per day</td>
</tr>
<tr>
<td>SGX</td>
<td>Singapore Exchange Securities Trading Limited</td>
</tr>
<tr>
<td>SPE</td>
<td>Society of Petroleum Engineers</td>
</tr>
<tr>
<td>SPEE</td>
<td>Society of Petroleum Evaluation Engineers</td>
</tr>
<tr>
<td>ss</td>
<td>Subsea</td>
</tr>
<tr>
<td>stb</td>
<td>Stock tank barrel</td>
</tr>
<tr>
<td>STOIIP</td>
<td>Stock Tank Oil Initially In Place</td>
</tr>
<tr>
<td>TCM</td>
<td>Technical Committee Meeting</td>
</tr>
<tr>
<td>TD</td>
<td>Total depth</td>
</tr>
<tr>
<td>TQT</td>
<td>Tornquist Trend</td>
</tr>
<tr>
<td>TVD</td>
<td>True Vertical Depth</td>
</tr>
<tr>
<td>TVDss</td>
<td>True Vertical Depth Subsea</td>
</tr>
<tr>
<td>TWT</td>
<td>Two Way Traveltime</td>
</tr>
<tr>
<td>VG</td>
<td>Viking Graben</td>
</tr>
<tr>
<td>WI</td>
<td>Working interest</td>
</tr>
<tr>
<td>WPC</td>
<td>World Petroleum Council</td>
</tr>
</tbody>
</table>
Appendix III
Summary of Reserves and Resources
(SGX Listing Rules Appendix 7D)
### SUMMARY OF RESERVES AND RESOURCES
(SGX Listing Rules Appendix 7D)

Rolvsnes, Norway

<table>
<thead>
<tr>
<th>Category</th>
<th>Gross Attributable to Licence (MMbbl / Bcf)</th>
<th>Net Attributable to Lime (MMbbl / Bcf)</th>
<th>Change from previous update (%)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Reserves</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Oil Reserves</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1P</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>2P</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>3P</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td><strong>Natural Gas Reserves</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1P</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>2P</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>3P</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td><strong>Natural Gas Liquids Reserves</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1P</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>2P</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>3P</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td><strong>Contingent Resources</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Oil</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1C</td>
<td>10.3</td>
<td>3.1</td>
<td>0</td>
<td>Unchanged from previous update (when called Edvard Grieg South).</td>
</tr>
<tr>
<td>2C</td>
<td>31.4</td>
<td>9.4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3C</td>
<td>77.9</td>
<td>23.4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td><strong>Natural Gas</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1C</td>
<td>10.4</td>
<td>3.1</td>
<td>0</td>
<td>Unchanged from previous update (when called Edvard Grieg South).</td>
</tr>
<tr>
<td>2C</td>
<td>31.8</td>
<td>9.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3C</td>
<td>78.7</td>
<td>23.6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Gross Attributable to Licence (MMbbl / Bcf)</td>
<td>Net Attributable to Lime (MMbbl / Bcf)</td>
<td>Change from previous update (%)</td>
<td>Remarks</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------------------------</td>
<td>---------------------------------------</td>
<td>---------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Natural Gas Liquids</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1C</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>2C</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>3C</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td><strong>Prospective Resources</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Oil</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Estimate</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Best Estimate</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>High Estimate</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td><strong>Natural Gas</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Estimate</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Best Estimate</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>High Estimate</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

**Notes:**

1. Gross Contingent Resources are 100% of the volumes estimated to be recoverable from the discovery in the event that development goes ahead.
2. Lime’s Net Contingent Resources in this table are Lime’s Working Interest fraction of the Gross Field Resources.
3. The volumes reported here are “unrisked” in the sense that no adjustment has been made for the risk that the discovery may not be developed in the form envisaged or may not be developed at all (i.e. no “Chance of Development” factor has been applied).
4. Contingent Resources should not be aggregated with Reserves because of the different levels of risk involved.
5. Rex International Holding Limited (Rex) has an effective interest of 90% in Lime.

1P: Proved; 2P: Proved + Probable; 3P: Proved + Probable + Possible

MMbbl: Millions of barrels; Bcf: Billions of cubic feet

Name of Qualified Person: Dr. John Barker
Date: 2nd February, 2018
Professional Society Affiliation / Membership: The Society of Petroleum Engineers (SPE)